Jinki Ittai Co, un développeur de technologies robotiques, et Nippon Signal Co, une entreprise spécialisée dans les technologies de l'information et l'électricité dans les infrastructures, ont développé conjointement la machine. Son opérateur, assis dans un cockpit sur le camion, voit à travers les yeux du robot grâce à des caméras et actionne à distance ses puissants membres et mains. Avec une portée verticale de 12 mètres, la machine peut utiliser divers accessoires afin de porter des objets pesant jusqu'à 40 kg, tenir un pinceau pour peindre ou utiliser une tronçonneuse.
Cette machine devrait permettre aux personnes de tous les sexes et de tous les âges de travailler à l'entretien des chemins de fer. La mécanisation contribue à l'objectif d'élimination des accidents du travail dus à des chocs électriques ou des chutes, et permet en sus d'améliorer la sécurité.
L’initiative n’est pas sans faire penser à l’utilisation de chiens-robots pour perquisitionner les laboratoires de drogue. C’est la vie humaine qui est protégée en mettant à contribution des kits matériels - à la présentation visuelle similaire à celle d’un chien sur pattes – programmables via une API fournie par le constructeur Boston Dynamics.
Ce type de mise en œuvre desdits robots consiste en général en de la détection et suivi d’objets. Dans ce cas, il y a collecte des images provenant de deux caméras avant et effectue une détection d’objet sur une classe spécifiée. Cette détection utilise Tensorflow via le tensorflow_object_detector. Il accepte n'importe quel modèle Tensorflow et permet au développeur de spécifier un sous-ensemble de classes de détection incluses dans le modèle. Il effectue cet ensemble d'opérations pour un nombre prédéfini d'itérations, en bloquant pendant une durée prédéfinie entre chaque itération. L'application détermine ensuite l'emplacement de la détection la plus fiable de la classe spécifiée et se dirige vers l'objet.
L’application est organisée en trois ensembles de processus Python communiquant avec le robot Spot. Le diagramme des processus est illustré ci-dessous. Le processus principal communique avec le robot Spot via GRPC et reçoit constamment des images. Ces images sont poussées dans la RAW_IMAGES_QUEUE et lues par les processus Tensorflow. Ces processus détectent des objets dans les images et poussent l'emplacement dans PROCESSED_BOXES_QUEUE. Le thread principal détermine alors l'emplacement de l'objet et envoie des commandes au robot pour qu'il se dirige vers l'objet.
Code Python : | Sélectionner tout |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 | # Copyright (c) 2023 Boston Dynamics, Inc. All rights reserved. # # Downloading, reproducing, distributing or otherwise using the SDK Software # is subject to the terms and conditions of the Boston Dynamics Software # Development Kit License (20191101-BDSDK-SL). """Tutorial to show how to use the Boston Dynamics API to detect and follow an object""" import argparse import io import json import math import os import signal import sys import time from multiprocessing import Barrier, Process, Queue, Value from queue import Empty, Full from threading import BrokenBarrierError, Thread import cv2 import numpy as np from PIL import Image from scipy import ndimage from tensorflow_object_detection import DetectorAPI import bosdyn.client import bosdyn.client.util from bosdyn import geometry from bosdyn.api import geometry_pb2 as geo from bosdyn.api import image_pb2, trajectory_pb2 from bosdyn.api.image_pb2 import ImageSource from bosdyn.api.spot import robot_command_pb2 as spot_command_pb2 from bosdyn.client.async_tasks import AsyncPeriodicQuery, AsyncTasks from bosdyn.client.frame_helpers import (GROUND_PLANE_FRAME_NAME, VISION_FRAME_NAME, get_a_tform_b, get_vision_tform_body) from bosdyn.client.image import ImageClient from bosdyn.client.lease import LeaseClient, LeaseKeepAlive from bosdyn.client.math_helpers import Quat, SE3Pose from bosdyn.client.robot_command import (CommandFailedError, CommandTimedOutError, RobotCommandBuilder, RobotCommandClient, blocking_stand) from bosdyn.client.robot_state import RobotStateClient LOGGER = bosdyn.client.util.get_logger() SHUTDOWN_FLAG = Value('i', 0) # Don't let the queues get too backed up QUEUE_MAXSIZE = 10 # This is a multiprocessing.Queue for communication between the main process and the # Tensorflow processes. # Entries in this queue are in the format: # { # 'source': Name of the camera, # 'world_tform_cam': transform from VO to camera, # 'world_tform_gpe': transform from VO to ground plane, # 'raw_image_time': Time when the image was collected, # 'cv_image': The decoded image, # 'visual_dims': (cols, rows), # 'depth_image': depth image proto, # 'system_cap_time': Time when the image was received by the main process, # 'image_queued_time': Time when the image was done preprocessing and queued # } RAW_IMAGES_QUEUE = Queue(QUEUE_MAXSIZE) # This is a multiprocessing.Queue for communication between the Tensorflow processes and # the bbox print process. This is meant for running in a containerized environment with no access # to an X display # Entries in this queue have the following fields in addition to those in : # { # 'processed_image_start_time': Time when the image was received by the TF process, # 'processed_image_end_time': Time when the image was processing for bounding boxes # 'boxes': list of detected bounding boxes for the processed image # 'classes': classes of objects, # 'scores': confidence scores, # } PROCESSED_BOXES_QUEUE = Queue(QUEUE_MAXSIZE) # Barrier for waiting on Tensorflow processes to start, initialized in main() TENSORFLOW_PROCESS_BARRIER = None COCO_CLASS_DICT = { 1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus', 7: 'train', 8: 'truck', 9: 'boat', 10: 'trafficlight', 11: 'firehydrant', 13: 'stopsign', 14: 'parkingmeter', 15: 'bench', 16: 'bird', 17: 'cat', 18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra', 25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie', 33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard', 37: 'sportsball', 38: 'kite', 39: 'baseballbat', 40: 'baseballglove', 41: 'skateboard', 42: 'surfboard', 43: 'tennisracket', 44: 'bottle', 46: 'wineglass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon', 51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange', 56: 'broccoli', 57: 'carrot', 58: 'hotdog', 59: 'pizza', 60: 'donut', 61: 'cake', 62: 'chair', 63: 'couch', 64: 'pottedplant', 65: 'bed', 67: 'diningtable', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse', 75: 'remote', 76: 'keyboard', 77: 'cellphone', 78: 'microwave', 79: 'oven', 80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock', 86: 'vase', 87: 'scissors', 88: 'teddybear', 89: 'hairdrier', 90: 'toothbrush' } # Mapping from visual to depth data VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE = { 'frontleft_fisheye_image': 'frontleft_depth_in_visual_frame', 'frontright_fisheye_image': 'frontright_depth_in_visual_frame' } ROTATION_ANGLES = { 'back_fisheye_image': 0, 'frontleft_fisheye_image': -78, 'frontright_fisheye_image': -102, 'left_fisheye_image': 0, 'right_fisheye_image': 180 } def _update_thread(async_task): while True: async_task.update() time.sleep(0.01) class AsyncImage(AsyncPeriodicQuery): """Grab image.""" def __init__(self, image_client, image_sources): # Period is set to be about 15 FPS super(AsyncImage, self).__init__('images', image_client, LOGGER, period_sec=0.067) self.image_sources = image_sources def _start_query(self): return self._client.get_image_from_sources_async(self.image_sources) class AsyncRobotState(AsyncPeriodicQuery): """Grab robot state.""" def __init__(self, robot_state_client): # period is set to be about the same rate as detections on the CORE AI super(AsyncRobotState, self).__init__('robot_state', robot_state_client, LOGGER, period_sec=0.02) def _start_query(self): return self._client.get_robot_state_async() def get_source_list(image_client): """Gets a list of image sources and filters based on config dictionary Args: image_client: Instantiated image client """ # We are using only the visual images with their corresponding depth sensors sources = image_client.list_image_sources() source_list = [] for source in sources: if source.image_type == ImageSource.IMAGE_TYPE_VISUAL: # only append if sensor has corresponding depth sensor if source.name in VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE: source_list.append(source.name) source_list.append(VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE[source.name]) return source_list def capture_images(image_task, sleep_between_capture): """ Captures images and places them on the queue Args: image_task (AsyncImage): Async task that provides the images response to use sleep_between_capture (float): Time to sleep between each image capture """ while not SHUTDOWN_FLAG.value: get_im_resp = image_task.proto start_time = time.time() if not get_im_resp: continue depth_responses = { img.source.name: img for img in get_im_resp if img.source.image_type == ImageSource.IMAGE_TYPE_DEPTH } entry = {} for im_resp in get_im_resp: if im_resp.source.image_type == ImageSource.IMAGE_TYPE_VISUAL: source = im_resp.source.name depth_source = VISUAL_SOURCE_TO_DEPTH_MAP_SOURCE[source] depth_image = depth_responses[depth_source] acquisition_time = im_resp.shot.acquisition_time image_time = acquisition_time.seconds + acquisition_time.nanos * 1e-9 try: image = Image.open(io.BytesIO(im_resp.shot.image.data)) source = im_resp.source.name image = ndimage.rotate(image, ROTATION_ANGLES[source]) if im_resp.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_GREYSCALE_U8: image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB) # Converted to RGB for TF tform_snapshot = im_resp.shot.transforms_snapshot frame_name = im_resp.shot.frame_name_image_sensor world_tform_cam = get_a_tform_b(tform_snapshot, VISION_FRAME_NAME, frame_name) world_tform_gpe = get_a_tform_b(tform_snapshot, VISION_FRAME_NAME, GROUND_PLANE_FRAME_NAME) entry[source] = { 'source': source, 'world_tform_cam': world_tform_cam, 'world_tform_gpe': world_tform_gpe, 'raw_image_time': image_time, 'cv_image': image, 'visual_dims': (im_resp.shot.image.cols, im_resp.shot.image.rows), 'depth_image': depth_image, 'system_cap_time': start_time, 'image_queued_time': time.time() } except Exception as exc: # pylint: disable=broad-except print(f'Exception occurred during image capture {exc}') try: RAW_IMAGES_QUEUE.put_nowait(entry) except Full as exc: print(f'RAW_IMAGES_QUEUE is full: {exc}') time.sleep(sleep_between_capture) def start_tensorflow_processes(num_processes, model_path, detection_class, detection_threshold, max_processing_delay): """Starts Tensorflow processes in parallel. It does not keep track of the processes once they are started because they run indefinitely and are never joined back to the main process. Args: num_processes (int): Number of Tensorflow processes to start in parallel. model_path (str): Filepath to the Tensorflow model to use. detection_class (int): Detection class to detect detection_threshold (float): Detection threshold to apply to all Tensorflow detections. max_processing_delay (float): Allowed delay before processing an incoming image. """ processes = [] for _ in range(num_processes): process = Process( target=process_images, args=( model_path, detection_class, detection_threshold, max_processing_delay, ), daemon=True) process.start() processes.append(process) return processes def process_images(model_path, detection_class, detection_threshold, max_processing_delay): """Starts Tensorflow and detects objects in the incoming images. Args: model_path (str): Filepath to the Tensorflow model to use. detection_class (int): Detection class to detect detection_threshold (float): Detection threshold to apply to all Tensorflow detections. max_processing_delay (float): Allowed delay before processing an incoming image. """ odapi = DetectorAPI(path_to_ckpt=model_path) num_processed_skips = 0 if TENSORFLOW_PROCESS_BARRIER is None: return try: TENSORFLOW_PROCESS_BARRIER.wait() except BrokenBarrierError as exc: print(f'Error waiting for Tensorflow processes to initialize: {exc}') return False while not SHUTDOWN_FLAG.value: try: entry = RAW_IMAGES_QUEUE.get_nowait() except Empty: time.sleep(0.1) continue for _, capture in entry.items(): start_time = time.time() processing_delay = time.time() - capture['raw_image_time'] if processing_delay > max_processing_delay: num_processed_skips += 1 print(f'skipped image because it took {processing_delay}') continue # Skip image due to delay image = capture['cv_image'] boxes, scores, classes, _ = odapi.process_frame(image) confident_boxes = [] confident_object_classes = [] confident_scores = [] if len(boxes) == 0: print('no detections founds') continue for box, score, box_class in sorted(zip(boxes, scores, classes), key=lambda x: x[1], reverse=True): if score > detection_threshold and box_class == detection_class: confident_boxes.append(box) confident_object_classes.append(COCO_CLASS_DICT[box_class]) confident_scores.append(score) image = cv2.rectangle(image, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 2) capture['processed_image_start_time'] = start_time capture['processed_image_end_time'] = time.time() capture['boxes'] = confident_boxes capture['classes'] = confident_object_classes capture['scores'] = confident_scores capture['cv_image'] = image try: PROCESSED_BOXES_QUEUE.put_nowait(entry) except Full as exc: print(f'PROCESSED_BOXES_QUEUE is full: {exc}') print('tf process ending') return True def get_go_to(world_tform_object, robot_state, mobility_params, dist_margin=0.5): """Gets trajectory command to a goal location Args: world_tform_object (SE3Pose): Transform from vision frame to target object robot_state (RobotState): Current robot state mobility_params (MobilityParams): Mobility parameters dist_margin (float): Distance margin to target """ vo_tform_robot = get_vision_tform_body(robot_state.kinematic_state.transforms_snapshot) print(f'robot pos: {vo_tform_robot}') delta_ewrt_vo = np.array( [world_tform_object.x - vo_tform_robot.x, world_tform_object.y - vo_tform_robot.y, 0]) norm = np.linalg.norm(delta_ewrt_vo) if norm == 0: return None delta_ewrt_vo_norm = delta_ewrt_vo / norm heading = _get_heading(delta_ewrt_vo_norm) vo_tform_goal = np.array([ world_tform_object.x - delta_ewrt_vo_norm[0] * dist_margin, world_tform_object.y - delta_ewrt_vo_norm[1] * dist_margin ]) se2_pose = geo.SE2Pose(position=geo.Vec2(x=vo_tform_goal[0], y=vo_tform_goal[1]), angle=heading) tag_cmd = RobotCommandBuilder.synchro_se2_trajectory_command(se2_pose, frame_name=VISION_FRAME_NAME, params=mobility_params) return tag_cmd def _get_heading(xhat): zhat = [0.0, 0.0, 1.0] yhat = np.cross(zhat, xhat) mat = np.array([xhat, yhat, zhat]).transpose() return Quat.from_matrix(mat).to_yaw() def set_default_body_control(): """Set default body control params to current body position""" footprint_R_body = geometry.EulerZXY() position = geo.Vec3(x=0.0, y=0.0, z=0.0) rotation = footprint_R_body.to_quaternion() pose = geo.SE3Pose(position=position, rotation=rotation) point = trajectory_pb2.SE3TrajectoryPoint(pose=pose) traj = trajectory_pb2.SE3Trajectory(points=[point]) return spot_command_pb2.BodyControlParams(base_offset_rt_footprint=traj) def get_mobility_params(): """Gets mobility parameters for following""" vel_desired = .75 speed_limit = geo.SE2VelocityLimit( max_vel=geo.SE2Velocity(linear=geo.Vec2(x=vel_desired, y=vel_desired), angular=.25)) body_control = set_default_body_control() mobility_params = spot_command_pb2.MobilityParams(vel_limit=speed_limit, obstacle_params=None, body_control=body_control, locomotion_hint=spot_command_pb2.HINT_TROT) return mobility_params def depth_to_xyz(depth, pixel_x, pixel_y, focal_length, principal_point): """Calculate the transform to point in image using camera intrinsics and depth""" x = depth * (pixel_x - principal_point.x) / focal_length.x y = depth * (pixel_y - principal_point.y) / focal_length.y z = depth return x, y, z def remove_ground_from_depth_image(raw_depth_image, focal_length, principal_point, world_tform_cam, world_tform_gpe, ground_tolerance=0.04): """ Simple ground plane removal algorithm. Uses ground height and does simple z distance filtering. Args: raw_depth_image (np.array): Depth image focal_length (Vec2): Focal length of camera that produced the depth image principal_point (Vec2): Principal point of camera that produced the depth image world_tform_cam (SE3Pose): Transform from VO to camera frame world_tform_gpe (SE3Pose): Transform from VO to GPE frame ground_tolerance (float): Distance in meters to add to the ground plane """ new_depth_image = raw_depth_image # same functions as depth_to_xyz, but converted to np functions indices = np.indices(raw_depth_image.shape) xs = raw_depth_image * (indices[1] - principal_point.x) / focal_length.x ys = raw_depth_image * (indices[0] - principal_point.y) / focal_length.y zs = raw_depth_image # create xyz point cloud camera_tform_points = np.stack([xs, ys, zs], axis=2) # points in VO frame world_tform_points = world_tform_cam.transform_cloud(camera_tform_points) # array of booleans where True means the point was below the ground plane plus tolerance world_tform_points_mask = (world_tform_gpe.z - world_tform_points[:, :, 2]) < ground_tolerance # remove data below ground plane new_depth_image[world_tform_points_mask] = 0 return new_depth_image def get_distance_to_closest_object_depth(x_min, x_max, y_min, y_max, depth_scale, raw_depth_image, histogram_bin_size=0.50, minimum_number_of_points=10, max_distance=8.0): """Make a histogram of distances to points in the cloud and take the closest distance with enough points. Args: x_min (int): minimum x coordinate (column) of object to find x_max (int): maximum x coordinate (column) of object to find y_min (int): minimum y coordinate (row) of object to find y_max (int): maximum y coordinate (row) of object to find depth_scale (float): depth scale of the image to convert from sensor value to meters raw_depth_image (np.array): matrix of depth pixels histogram_bin_size (float): size of each bin of distances minimum_number_of_points (int): minimum number of points before returning depth max_distance (float): maximum distance to object in meters """ num_bins = math.ceil(max_distance / histogram_bin_size) # get a sub-rectangle of the bounding box out of the whole image, then flatten obj_depths = (raw_depth_image[y_min:y_max, x_min:x_max]).flatten() obj_depths = obj_depths / depth_scale obj_depths = obj_depths[obj_depths != 0] hist, hist_edges = np.histogram(obj_depths, bins=num_bins, range=(0, max_distance)) edges_zipped = zip(hist_edges[:-1], hist_edges[1:]) # Iterate over the histogram and return the first distance with enough points. for entry, edges in zip(hist, edges_zipped): if entry > minimum_number_of_points: filtered_depths = obj_depths[(obj_depths > edges[0]) & (obj_depths < edges[1])] if len(filtered_depths) == 0: continue return np.mean(filtered_depths) return max_distance def rotate_about_origin_degrees(origin, point, angle): """ Rotate a point counterclockwise by a given angle around a given origin. Args: origin (tuple): Origin to rotate the point around point (tuple): Point to rotate angle (float): Angle in degrees """ return rotate_about_origin(origin, point, math.radians(angle)) def rotate_about_origin(origin, point, angle): """ Rotate a point counterclockwise by a given angle around a given origin. Args: origin (tuple): Origin to rotate the point around point (tuple): Point to rotate angle (float): Angle in radians """ orig_x, orig_y = origin pnt_x, pnt_y = point ret_x = orig_x + math.cos(angle) * (pnt_x - orig_x) - math.sin(angle) * (pnt_y - orig_y) ret_y = orig_y + math.sin(angle) * (pnt_x - orig_x) + math.cos(angle) * (pnt_y - orig_y) return int(ret_x), int(ret_y) def get_object_position(world_tform_cam, world_tform_gpe, visual_dims, depth_image, bounding_box, rotation_angle): """ Extract the bounding box, then find the mode in that region. Args: world_tform_cam (SE3Pose): SE3 transform from world to camera frame visual_dims (Tuple): (cols, rows) tuple from the visual image depth_image (ImageResponse): From a depth camera corresponding to the visual_image bounding_box (list): Bounding box from tensorflow rotation_angle (float): Angle (in degrees) to rotate depth image to match cam image rotation """ # Make sure there are two images. if visual_dims is None or depth_image is None: # Fail. return # Rotate bounding box back to original frame points = [(bounding_box[1], bounding_box[0]), (bounding_box[3], bounding_box[0]), (bounding_box[3], bounding_box[2]), (bounding_box[1], bounding_box[2])] origin = (visual_dims[0] / 2, visual_dims[1] / 2) points_rot = [rotate_about_origin_degrees(origin, point, rotation_angle) for point in points] # Get the bounding box corners. y_min = max(0, min([point[1] for point in points_rot])) x_min = max(0, min([point[0] for point in points_rot])) y_max = min(visual_dims[1], max([point[1] for point in points_rot])) x_max = min(visual_dims[0], max([point[0] for point in points_rot])) # Check that the bounding box is valid. if (x_min < 0 or y_min < 0 or x_max > visual_dims[0] or y_max > visual_dims[1]): print(f'Bounding box is invalid: ({x_min}, {y_min}) | ({x_max}, {y_max})') print(f'Bounds: ({visual_dims[0]}, {visual_dims[1]})') return # Unpack the images. try: if depth_image.shot.image.pixel_format == image_pb2.Image.PIXEL_FORMAT_DEPTH_U16: dtype = np.uint16 else: dtype = np.uint8 img = np.fromstring(depth_image.shot.image.data, dtype=dtype) if depth_image.shot.image.format == image_pb2.Image.FORMAT_RAW: img = img.reshape(depth_image.shot.image.rows, depth_image.shot.image.cols) else: img = cv2.imdecode(img, -1) depth_image_pixels = img depth_image_pixels = remove_ground_from_depth_image( depth_image_pixels, depth_image.source.pinhole.intrinsics.focal_length, depth_image.source.pinhole.intrinsics.principal_point, world_tform_cam, world_tform_gpe) # Get the depth data from the region in the bounding box. max_distance = 8.0 depth = get_distance_to_closest_object_depth(x_min, x_max, y_min, y_max, depth_image.source.depth_scale, depth_image_pixels, max_distance=max_distance) if depth >= max_distance: # Not enough depth data. print('Not enough depth data.') return False else: print(f'distance to object: {depth}') center_x = round((x_max - x_min) / 2.0 + x_min) center_y = round((y_max - y_min) / 2.0 + y_min) tform_x, tform_y, tform_z = depth_to_xyz( depth, center_x, center_y, depth_image.source.pinhole.intrinsics.focal_length, depth_image.source.pinhole.intrinsics.principal_point) camera_tform_obj = SE3Pose(tform_x, tform_y, tform_z, Quat()) return world_tform_cam * camera_tform_obj except Exception as exc: # pylint: disable=broad-except print(f'Error getting object position: {exc}') return def _check_model_path(model_path): if model_path is None or \ not os.path.exists(model_path) or \ not os.path.isfile(model_path): print(f'ERROR, could not find model file {model_path}') return False return True def _check_and_load_json_classes(config_path): if os.path.isfile(config_path): with open(config_path) as json_classes: global COCO_CLASS_DICT # pylint: disable=global-statement COCO_CLASS_DICT = json.load(json_classes) def _find_highest_conf_source(processed_boxes_entry): highest_conf_source = None max_score = 0 for key, capture in processed_boxes_entry.items(): if 'scores' in capture.keys(): if len(capture['scores']) > 0 and capture['scores'][0] > max_score: highest_conf_source = key max_score = capture['scores'][0] return highest_conf_source def signal_handler(signal, frame): print('Interrupt caught, shutting down') SHUTDOWN_FLAG.value = 1 def main(): """Command line interface.""" parser = argparse.ArgumentParser() parser.add_argument( '--model-path', default='/model.pb', help= ('Local file path to the Tensorflow model, example pre-trained models can be found at ' 'https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md' )) parser.add_argument('--classes', default='/classes.json', type=str, help='File containing json mapping of object class IDs to class names') parser.add_argument('--number-tensorflow-processes', default=1, type=int, help='Number of Tensorflow processes to run in parallel') parser.add_argument('--detection-threshold', default=0.7, type=float, help='Detection threshold to use for Tensorflow detections') parser.add_argument( '--sleep-between-capture', default=0.2, type=float, help=('Seconds to sleep between each image capture loop iteration, which captures ' 'an image from all cameras')) parser.add_argument( '--detection-class', default=1, type=int, help=('Detection classes to use in the Tensorflow model.' 'Default is to use 1, which is a person in the Coco dataset')) parser.add_argument( '--max-processing-delay', default=7.0, type=float, help=('Maximum allowed delay for processing an image. ' 'Any image older than this value will be skipped')) parser.add_argument('--test-mode', action='store_true', help='Run application in test mode, don\'t execute commands') bosdyn.client.util.add_base_arguments(parser) bosdyn.client.util.add_payload_credentials_arguments(parser) options = parser.parse_args() signal.signal(signal.SIGINT, signal_handler) try: # Make sure the model path is a valid file if not _check_model_path(options.model_path): return False # Check for classes json file, otherwise use the COCO class dictionary _check_and_load_json_classes(options.classes) global TENSORFLOW_PROCESS_BARRIER # pylint: disable=global-statement TENSORFLOW_PROCESS_BARRIER = Barrier(options.number_tensorflow_processes + 1) # Start Tensorflow processes tf_processes = start_tensorflow_processes(options.number_tensorflow_processes, options.model_path, options.detection_class, options.detection_threshold, options.max_processing_delay) # sleep to give the Tensorflow processes time to initialize try: TENSORFLOW_PROCESS_BARRIER.wait() except BrokenBarrierError as exc: print(f'Error waiting for Tensorflow processes to initialize: {exc}') return False # Start the API related things # Create robot object with a world object client sdk = bosdyn.client.create_standard_sdk('SpotFollowClient') robot = sdk.create_robot(options.hostname) if options.payload_credentials_file: robot.authenticate_from_payload_credentials( *bosdyn.client.util.get_guid_and_secret(options)) else: bosdyn.client.util.authenticate(robot) # Time sync is necessary so that time-based filter requests can be converted robot.time_sync.wait_for_sync() # Verify the robot is not estopped and that an external application has registered and holds # an estop endpoint. assert not robot.is_estopped(), 'Robot is estopped. Please use an external E-Stop client,' \ ' such as the estop SDK example, to configure E-Stop.' # Create the sdk clients robot_state_client = robot.ensure_client(RobotStateClient.default_service_name) robot_command_client = robot.ensure_client(RobotCommandClient.default_service_name) lease_client = robot.ensure_client(LeaseClient.default_service_name) image_client = robot.ensure_client(ImageClient.default_service_name) source_list = get_source_list(image_client) image_task = AsyncImage(image_client, source_list) robot_state_task = AsyncRobotState(robot_state_client) task_list = [image_task, robot_state_task] _async_tasks = AsyncTasks(task_list) print('Detect and follow client connected.') lease = lease_client.take() lease_keep = LeaseKeepAlive(lease_client) # Power on the robot and stand it up resp = robot.power_on() try: blocking_stand(robot_command_client) except CommandFailedError as exc: print(f'Error ({exc}) occurred while trying to stand. Check robot surroundings.') return False except CommandTimedOutError as exc: print(f'Stand command timed out: {exc}') return False print('Robot powered on and standing.') params_set = get_mobility_params() # This thread starts the async tasks for image and robot state retrieval update_thread = Thread(target=_update_thread, args=[_async_tasks]) update_thread.daemon = True update_thread.start() # Wait for the first responses. while any(task.proto is None for task in task_list): time.sleep(0.1) # Start image capture process image_capture_thread = Process(target=capture_images, args=(image_task, options.sleep_between_capture), daemon=True) image_capture_thread.start() while not SHUTDOWN_FLAG.value: # This comes from the tensorflow processes and limits the rate of this loop try: entry = PROCESSED_BOXES_QUEUE.get_nowait() except Empty: continue # find the highest confidence bounding box highest_conf_source = _find_highest_conf_source(entry) if highest_conf_source is None: # no boxes or scores found continue capture_to_use = entry[highest_conf_source] raw_time = capture_to_use['raw_image_time'] time_gap = time.time() - raw_time if time_gap > options.max_processing_delay: continue # Skip image due to delay # Find the transform to the highest confidence object using the depth sensor get_object_position_start = time.time() robot_state = robot_state_task.proto world_tform_gpe = get_a_tform_b(robot_state.kinematic_state.transforms_snapshot, VISION_FRAME_NAME, GROUND_PLANE_FRAME_NAME) world_tform_object = get_object_position( capture_to_use['world_tform_cam'], world_tform_gpe, capture_to_use['visual_dims'], capture_to_use['depth_image'], capture_to_use['boxes'][0], ROTATION_ANGLES[capture_to_use['source']]) get_object_position_end = time.time() print(f'system_cap_time: {capture_to_use["system_cap_time"]}, ' f'image_queued_time: {capture_to_use["image_queued_time"]}, ' f'processed_image_start_time: {capture_to_use["processed_image_start_time"]}, ' f'processed_image_end_time: {capture_to_use["processed_image_end_time"]}, ' f'get_object_position_start_time: {get_object_position_start}, ' f'get_object_position_end_time: {get_object_position_end}, ') # get_object_position can fail if there is insufficient depth sensor information if not world_tform_object: continue scores = capture_to_use['scores'] print(f'Position of object with confidence {scores[0]}: {world_tform_object}') print(f'Process latency: {time.time() - capture_to_use["system_cap_time"]}') tag_cmd = get_go_to(world_tform_object, robot_state, params_set) end_time = 15.0 if tag_cmd is not None: if not options.test_mode: print('executing command') robot_command_client.robot_command(lease=None, command=tag_cmd, end_time_secs=time.time() + end_time) else: print('Running in test mode, skipping command.') # Shutdown lease keep-alive and return lease gracefully. lease_keep.shutdown() lease_client.return_lease(lease) return True except Exception as exc: # pylint: disable=broad-except LOGGER.error('Spot Tensorflow Detector threw an exception: %s', exc) # Shutdown lease keep-alive and return lease gracefully. return False if __name__ == '__main__': if not main(): sys.exit(1) |
Ce sont les tentatives de mise au rebut total des humains au profit de la machine qui continuent à faire couler beaucoup d’encre
La technologie des caisses dites automatiques devait révolutionner le shopping. Mais, tant pour les consommateurs que pour les commerçants, elle n’a pas tenu ses promesses comme l’illustre le cas McDonald’s.
« Ça n’a rien apporté de ce qu’elle promettait », souligne Christopher Andrews, professeur associé et président de sociologie à l’université Drew, aux États-Unis, et auteur de The Overworked Consumer: Self-Checkouts, Supermarkets, and the Do-It-Yourself Economy. « Les magasins voyaient cela comme la nouvelle frontière… S’ils pouvaient faire croire au consommateur que [la caisse automatique] était un moyen préférable de faire ses courses, alors ils pourraient réduire les coûts de main-d’œuvre. Mais ils se rendent compte que les gens ont besoin d’aide pour le faire, ou qu’ils vont voler des choses. Ils ont fini par se rendre compte qu’ils ne font pas d’économies, ils perdent de l’argent ».
De nombreuses entreprises de vente au détail ont investi des millions - voire des milliards - de dollars dans la technologie des caisses automatiques, qui, selon Andrews, a été développée pour la première fois dans les années 1980, et a commencé à apparaître dans les magasins dans les années 1990. Elles ne sont pas exactement bon marché à installer dans les magasins : certains experts estiment qu’un système de quatre bornes peut coûter six chiffres. Malgré le coût pour les installer, de nombreux détaillants font marche arrière sur la technologie. Target, par exemple, limite le nombre d’articles que les clients des caisses automatiques peuvent acheter en une seule fois. Walmart a supprimé certaines bornes de caisse automatique dans certains magasins pour dissuader les vols. Au Royaume-Uni, la chaîne de supermarchés Booths a également réduit le nombre de bornes de libre-service dans ses magasins, car les clients disent qu’elles sont lentes et peu fiables. Dollar General, l’une des entreprises de vente au détail qui connaît la plus forte croissance aux États-Unis, revoit également sa stratégie.
En 2022, la chaîne de magasins à prix réduit a misé fortement sur la technologie des caisses automatiques - il n’est pas rare de voir un ou deux employés seulement s’occuper d’un magasin entier de Dollar General dans certaines régions. Mais la société a annoncé en janvier 2024 qu’elle allait réduire le nombre de caisses automatiques dans ses magasins, après avoir constaté que les clients préféraient interagir avec un caissier humain. « Nous avons appris que nos clients apprécient vraiment le contact humain », a déclaré Todd Vasos, le PDG de Dollar General, lors d’une conférence téléphonique avec les analystes.
Les clients ne sont pas les seuls à être mécontents de la technologie des caisses automatiques. Les employés des magasins se plaignent également du stress supplémentaire qu’elle leur impose, car ils doivent surveiller plusieurs machines à la fois, tout en gérant les autres tâches du magasin. Certains syndicats ont même lancé des campagnes pour inciter les clients à boycotter les caisses automatiques, afin de protéger les emplois des caissiers. Selon une étude de l’université d’Oxford, les caissiers sont parmi les métiers les plus menacés par l’automatisation, avec un risque de 97% de voir leur travail remplacé par des machines.
McDonald's Ends AI Drive-Thru Experiment After Customer Frustrations
— AIIA (@Aiinaustralia) June 18, 2024
McDonald's has decided to end its experimental use of artificial intelligence in its drive-thru service after facing numerous issues that left customers frustrated. The AI technology, which was intended to… pic.twitter.com/OwWDeknVZl
Il y a plusieurs raisons possibles de cet échec, selon les experts. Tout d’abord, il y a le problème de la conception. Les machines sont souvent mal adaptées aux besoins des clients, qui doivent scanner des codes-barres illisibles, taper des codes PLU spécifiques, peser des articles, payer avec des cartes ou des espèces, et placer leurs achats dans des sacs. Le moindre faux pas peut déclencher une alerte sonore et un message d’erreur, comme « article inattendu dans la zone de conditionnement », qui nécessite l’intervention d’un employé. Les clients peuvent se sentir frustrés, confus ou gênés par ces incidents, qui ralentissent le processus de paiement.
Ensuite, il y a le problème de la confiance. Les clients peuvent avoir l’impression que les machines essaient de les tromper, en leur facturant des articles en double, en leur refusant des réductions ou en leur imposant des frais supplémentaires. Les commerçants, quant à eux, doivent faire face au risque de vol, qui est plus élevé avec les caisses automatiques qu’avec les caisses traditionnelles. Selon une étude de l’université de Leicester, au Royaume-Uni, le taux de perte dans les magasins avec des caisses automatiques était de 4%, contre 1,47% dans les magasins sans. Les chercheurs ont attribué ce phénomène à la facilité avec laquelle les clients peuvent tromper les machines, en scannant des articles moins chers à la place de ceux qu’ils achètent, en ne scannant pas certains articles du tout, ou en utilisant des codes de réduction frauduleux.
Enfin, il y a le problème de la relation. Les clients peuvent se sentir déshumanisés par les machines, qui leur parlent avec une voix synthétique et leur donnent des instructions impersonnelles. Ils peuvent aussi regretter l’absence d’interaction sociale avec un caissier humain, qui peut leur sourire, leur faire la conversation ou leur donner des conseils. Les caissiers, de leur côté, peuvent se sentir dévalorisés par les machines, qui leur font perdre leur rôle de service à la clientèle et les transforment en simples surveillants ou réparateurs. Les machines peuvent aussi créer un sentiment de concurrence ou de menace, car elles représentent une possible substitution de leur travail.
Certains services s’appuient même sur les humains pour simuler l’intelligence artificielle“Give me some food!” Man goes ballistic at Maryland McDonald’s drive-thru window. pic.twitter.com/o3W5lLAXrH
— Mike Sington (@MikeSington) November 10, 2023
Lors de l’ouverture de l’Amazon Go Grocery, le premier supermarché automatisé et sans caissiers à Seattle, « Just Walk Out » avait fait l’objet de présentation en tant que « technologie d’achat la plus avancée au monde. » Bien que le service dans ces supermarchés semblait entièrement automatisé, il s'appuyait sur plus de 1000 personnes en Inde qui regardaient et étiquetaient des vidéos pour assurer la facturation « automatique ». En d’autres termes, les caissiers étaient en réalité hors du site, et ils observaient les clients pendant leurs achats. Les rapports y relatifs font état de ce que l’entreprise a décidé de conserver sa « technologie » dans un petit nombre de magasins Fresh au Royaume-Uni et la retirer de ces derniers aux USA.
Just Walk Out a été introduit pour la première fois en 2016. Cette technologie avait fait l'objet de présentation comme la plus importante et la plus audacieuse d'Amazon en matière d'achats de produits d'épicerie. La technologie semblait incroyable jusqu'à ce qu'on en découvre les dessous. En effet, les clients mettaient souvent des heures à recevoir leurs reçus après avoir quitté le magasin, en grande partie parce que les caissiers délocalisés visionnaient à nouveau les vidéos et attribuaient les articles à différents clients. Le système de scanners et de caméras vidéo dans chaque magasin est en sus très coûteux. D’où la décision d’Amazon d’abandonner cette « technologie » en commençant par ses magasins Fresh aux USA.
Amazon’s ‘Just Walk Out’ stores and its ‘magical’ technology based on AI was hailed as the shopping experience of the future. However, a new report reveals that the artificial intelligence used was not that artificial pic.twitter.com/gNKTx1c1Q0
— RT (@RT_com) April 5, 2024
Et vous ?
Quels sont les secteurs d’activités pour lesquels il fait sens de mettre à contribution les robots et l’intelligence artificielle ?
Quels sont les domaines pour lesquelles les tentatives de mise au rebut total des humains au profit des machines et de l’intelligence artificielle continueront de poser problème pour de nombreuses années encore ?
Voir aussi :
57 % des travailleurs dans l'industrie technologique dans la Silicon Valley ont déclaré être en burn out, d'après une enquête
Les chercheurs en intelligence artificielle peuvent-ils gagner jusqu'à 1 million $ par an dans la Silicon Valley ? un aperçu des salaires
La bulle technologique de la Silicon Valley est plus grande qu'elle ne l'était en 2000, mais sa fin approche selon des analystes