Dans un contexte de protestations contre l’utilisation de l’IA sur les champs de batailleL'armée américaine teste des chiens-robots au Moyen-Orient. La manœuvre s’inscrit dans le tableau plus englobant de la mise en œuvre de l’intelligence artificielle sur les champs de bataille qui concerne plusieurs autres pays. Du point de vue du développeur informatique, ces robots sont des kits matériels - à la présentation visuelle similaire à celle d’un chien sur pattes – programmables via une API fournie par le constructeur. C’est au travers de cette dernière, ainsi que d’une série de modules d’extensions, que le développeur peut aller à l’essentiel de l’application à mettre en œuvre.
"Apart from cheaper missiles and exotic energy weapons, the U.S. military also appears focused on autonomous guns..." 🤖
— Aaron Buley (@aaronbuley) October 2, 2024
YIKES. https://t.co/z0BcxSBIpz pic.twitter.com/DfYj5sLmSh
Ces robots s’appuient sur de complexes algorithmes de contrôle pour s’équilibrer et se déplacer
Ces robots s’appuient à la base sur des applications de détection et suivi d’objets. Dans ce cas, il y a au préalable collecte des images provenant de caméras avant puis détection d’objet sur une classe spécifiée. Cette détection utilise Tensorflow via le tensorflow_object_detector. Le robot accepte n'importe quel modèle Tensorflow et permet au développeur de spécifier un sous-ensemble de classes de détection incluses dans le modèle. Il effectue cet ensemble d'opérations pour un nombre prédéfini d'itérations, en bloquant pendant une durée prédéfinie entre chaque itération. L'application détermine ensuite l'emplacement de la détection la plus fiable de la classe spécifiée et se dirige vers l'objet.
L’application est organisée en trois ensembles de processus Python communiquant avec le robot Spot. Le diagramme des processus est illustré ci-dessous. Le processus principal communique avec le robot Spot via GRPC et reçoit constamment des images. Ces images sont poussées dans la RAW_IMAGES_QUEUE et lues par les processus Tensorflow. Ces processus détectent des objets dans les images et poussent l'emplacement dans PROCESSED_BOXES_QUEUE. Le thread principal détermine alors l'emplacement de l'objet et envoie des commandes au robot pour qu'il se dirige vers l'objet....
La fin de cet article est réservée aux abonnés. Soutenez le Club Developpez.com en prenant un abonnement pour que nous puissions continuer à vous proposer des publications.